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COMMENT 

Remarks on the finite temperature effect in supersymmetric 
quantum mechanics 

Pinaki Roy and Rajkumar Roychoudhury 
Electronics Unit, Indian Statistical Institute, Calcutta-700 035, India 

Received 18 December 1987. in final form 7 March 1988 

Abstract. Using the thermofield dynamics formalism we study the effect of temperature 
on supersymmetry within the context of supersymmetric quantum mechanics. The model 
considered here involves an interaction not of polynomial type and it is shown here that 
the finite-temperature effect causes spontaneous breaking of supersymmetry. 

In recent times finite-temperature effects in supersymmetric theories have been studied 
in considerable detail. However, all the papers have dealt with supersymmetric field 
theories and only very recently have finite-temperature effects in supersymmetric 
quantum mechanics (SUSYQM) been studied (Das et al 1986, Fuchs 1985, Roy and 
Roychoudhury 1987a). In these papers it has been shown that supersymmetry is 
spontaneously broken at finite temperature. However, in these papers models based 
on superpotentials with polynomial character only were considered. In the present 
paper we shall study the finite-temperature effect on a SUSYQM model based on a 
superpotential with (non-singular) non-polynomial character. More precisely, we shall 
evaluate the temperature-dependent ground-state energy to study the symmetry 
behaviour. Throughout the calculations we shall use the thermofield dynamics formal- 
ism (Ojima 1981). We shall also indicate a general method of performing perturbative 
calculations at finite temperature when the interaction is of non-polynomial character. 

To begin with, let us first specify the superpotential of the model (Roy and 
Roychoudhury 1987b, c): 

W(x)=x+2gx/ ( l+gx2) .  (1) 

The SUSYQM Hamiltonian corresponding to this superpotential is given by (Cooper 
and Freedman 1983) 

(2) H = f p 2 + $  W Z (  x )  +$ W’(x)[ J,  $1 
where x, p and $ satisfy the following relations: 

[x, PI = i { & * I =  1 (3) 

and all other brackets vanish. 
From (1) the zero-energy wavefunctions can be easily found and are given by 

q:(x)-exp( *jx W(r) dr) (4) 
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and since rp!(x) - (1 + gx’)-’ exp( -4x’) + 0 as x + fa, we conclude that a physically 
acceptable ground state (of zero energy, i.e. E, = 0) exists and so supersymmetry is 
unbroken. 

Also from (1) and (2) we can write H in the form 

H = H ~ + ~  ( 5 )  

where Ho denotes the Hamiltonian of the SUSY harmonic oscillator 

Ho = +p’+ fx’+i[ f j ,  $ 1  ( 6 )  

and ? denotes the interaction potential: 

4g +IJ; 
(1 + gx’) (1 + gx’) ++ - (1 + g x y  

f = 2 +  (g-2)  + 2g - 
(7)  

Next we introduce the bosonic and fermionic creation and annihilation operators: 

a +  = ( p  + ix ) / J2  a = ( p - i x ) / J 2  (8) 

b + = f j  b = 4. (9) 

[ a + ,  a’] = [ a ,  U ]  = { b + ,  b’} = {b ,  b }  = [ a ,  b’] = 0. 

Using (3), (8) and (9) the following relations can now be established: 

[ a ,  a + ] = { b ,  b + } =  1 (10) 

It is now possible to write the Hamiltonian of the SUSY oscillator in the following form: 

(11) Ho = ( a + u  + b’b) = (NB+ NF) 

where NB and NF stand for bosonic and fermionic number operators with eigenvalues 
given respectively by 

n B = O ,  1, 2,.  . n F = o ,  1. (12) 

10) = 1 n B  = 0, n F = 0) 

The ground state of the SUSY oscillator is given by 

(13) 

and the ground-state energy is 

Eo= (ne  = 0, n F =  OlHlnB = 0, n F  = 0) = 0. 

Note that for the ground state given by (13) we have 

(14) 

a10) = b(0 )  = 0. (15) 

Next we turn to the description of the system at finite temperature. In the thermofield 
dynamics approach (Ojima 1981) the Hilbert space of states is doubled by the introduc- 
tion of tilde states denoted by ICB, GF). There are creation and annihilation operators 
denoted respectively by G+, 6’, G, 6 acting on the tilde states. Also the tilde operators 
satisfy the same commutation and anticommutation relations as the non-tilde ones. 

A physical state would now look like InB, nF)OIGB, GF); thus, for example, the 
ground state of the SUSY oscillator would be 10) = InB = 0, nF = O)OIGB = 0, GF = 0) and 
corresponding to (15) we have 

tq0) = 610) = 0. (16) 
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It is now necessary to determine the forms of various creation and annihilation 

(17) 

(18) 

operators at finite temperature. These are given by (Ojima 1981) 

a ( p )  = a cosh e ( @ )  -a'' sinh e ( @ )  
a'(@) = a' cosh e ( @ )  - a+ sinh e ( p )  

where e ( @ )  is defined by 

cosh e ( @ )  = ( 1  - e-@)-'/' sinh e ( p )  = e-@/'( 1 - e-@)-'". (19) 

Fermion annihilation operators are given by 

b ( p )  = b cos e ( p )  - 5+ sin e ( p )  
6(p)=b 'cos  e(p)+b'sin e ( p )  

where e ( p )  is defined by 

cos e (@)  = (1 + e-@ sin = e-@/*(1+ e-@ )-'I2.  (22) 

The creation operators can be obtained by taking Hermitian conjugates of the annihila- 
tion operators: 

a '@)  = a' cosh e ( p )  - a' sinh e ( @ )  (23) 

a"@) = a" cosh e ( p )  - a sinh O(p) 
b + ( p )  = b' cos e ( p )  - b'sin e ( p )  
d + ( p )  = b'+ cos e ( p ) +  b sin e ( p ) .  

It may be pointed out that the relations (17), (18), (20), (21) and (23)-(26) may be 
inverted, so that the zero-temperature operators can be expressed in terms of the 
temperature-dependent ones, for example, 

a = a @ )  cosh e @ ) +  a"@) sinh e ( @ )  
b = b ( p )  cos e (@)+  6 ' ( p )  sin e ( p ) .  

The temperature-dependent operators satisfy the following relations: 

[ a @ ) ,  a'(P)l = [a'@), a''(P)l = {b(P)Y b + ( P ) )  = m), 6" = 1 (29) 

and all other brackets vanish. 
We note that the thermal vacuum is given by 

lo(p)) = I n B ( P )  = 0, nF(P) = O)@ I n ' B ( P )  =o,  n'F(p> =o> 

a ( P ) I O ( P ) ) =  a'(P)IO(P))= WP) lO(P) )  = &P)lO(P)) =o. (31) 

(O(P) lO(P) )=  1. (32) 

(30) 

and it is annihilated by the destruction operators: 

Also we have 

An important point to note is that the temperature-dependent vacuum expectation 
value of any operator X can be calculated from the following relation (Ojima 1981): 

( X ) ,  = (O(P)lXlO(P)). (33) 
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To determine the effect of temperature on supersymmetry it is now necessary to 
evaluate the temperature-dependent ground-state energy of the system specified by ( 1 )  
(it may be recalled here that in SUSY the ground-state energy serves as an order 
parameter). We shall perform this by using first-order perturbation theory. In other 
words we have to find the following: 

EG(P)  =(0(P)lHl0(P))=(0(P)/(H,+ Q)lO(P)) 

= ( 0 ( P ) I H o l  0 ( P )) + ( 0 ( P 1 I Q l  0 ( P )) . (34) 

Using (31) ,  (32) and their Hermitian conjugates we find from ( 1 1 )  that 

Before evaluating the second expression in (34) we note that from relation ( 8 )  we have 

(36) x2 = -;(a+ - a)' 

and using (31 )  we can write this as 

x2 = -+(A' - A)* 

where the operators A and  A+ are given by 

A = a ( @ )  cosh e ( p )  - a'(p) sinh e ( p )  
A' = a+@)  cosh e @ )  - a'+@) sinh e@) .  

(37)  

(38) 

(39) 

The operators A and A' satisfy the following commutation relation: 

[A, A+] = 1 .  (40) 

The second term in the second expression of (38) can now be evaluated as follows: 

Now using the identity 

A(A+-  A)" = n(A+-A)"- '  + ( A +  -A)"A 

repeatedly in the operator product expansion on the R H S  of (42) we get 

(43) 

The sum in (44) can be performed by the Bore1 summation technique. For the sake 
of completeness we quote the result (Popov et a1 1977). 

If f(z) is defined by 
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then the sum of the series is given by 

where 

F ( x ,  a, y )  = x - ~  e-'/"[( t - 1)" + 1Iy-' dt. iP 
Using (45)-(48) in (47) we get 

(46) 

(47) 

where T(a, x)  denotes the incomplete gamma function (Gradshteyn and Ryzhik 1980). 
Proceeding similarly we find for the third term in the second expression of (35) 

2g bb' O ( p )  =2g(g)-'/ ' e'/gI'(i, l / g )  cos' @ p ) .  (50) I )  
Now differentiating both sides of (49) WRT g the fourth term is found to be 

Finally, collecting all the terms we get 

ECi(P) = ( O(P)IHI O(P 1) 

Since E&) > 0 for any P we conclude that supersymmetry is spontaneously broken. 
Note that for p + ~3 we recover the correct zero-temperature behaviour, namely EG( T = 
0) = 0 (in the first order in g )  indicating that SUSY is unbroken at zero temperature. 

In conclusion it has been shown here that the finite-temperature effect causes 
spontaneous breakdown of supersymmetry. This result supports an earlier conclusion 
of Das et af (1986). Also we have outlined a general method of performing perturbative 
calculations at finite temperature when the interaction is not of polynomial character. 

One of the authors (PR) thanks the Council of Scientific and Industrial Research, 
India for financial assistance. 
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